Fully Secure Unbounded Revocable Attribute-Based Encryption in Prime Order Bilinear Groups via Subset Difference Method

نویسندگان

  • Pratish Datta
  • Ratna Dutta
  • Sourav Mukhopadhyay
چکیده

Providing an efficient revocation mechanism for attribute-based encryption (ABE) is of utmost importance since over time an user’s credentials may be revealed or expired. All previously known revocable ABE (RABE) constructions (a) essentially utilize the complete subtree (CS) scheme for revocation purpose, (b) are bounded in the sense that the size of the public parameters depends linearly on the size of the attribute universe and logarithmically on the number of users in the system, and (c) are either selectively secure, which seems unrealistic in a dynamic system such as RABE, or fully secure but built in a composite order bilinear group setting, which is undesirable from the point of view of both efficiency and security. This paper presents the first fully secure unbounded RABE using subset difference (SD) mechanism for revocation which greatly improves the broadcast efficiency compared to the CS scheme. Our RABE scheme is built on a prime order bilinear group setting resulting in practical computation cost, and its security depends on the Decisional Linear assumption.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptively Secure Unrestricted Attribute-Based Encryption with Subset Difference Revocation in Bilinear Groups of Prime Order

Providing an efficient revocation mechanism for attribute-based encryption (ABE) is of utmost importance since over time a user’s credentials may be revealed or expired. All previously known revocable ABE (RABE) constructions (a) essentially utilize the complete subtree (CS) scheme for revocation purpose, (b) are bounded in the sense that the size of the public parameters depends linearly on th...

متن کامل

Dual System Encryption Framework in Prime-Order Groups via Computational Pair Encodings

We propose a new generic framework for achieving fully secure attribute based encryption (ABE) in prime-order bilinear groups. It is generic in the sense that it can be applied to ABE for arbitrary predicate. All previously available frameworks that are generic in this sense are given only in composite-order bilinear groups, of which operations are known to be much less efficient than in prime-...

متن کامل

Unbounded ABE via Bilinear Entropy Expansion, Revisited

We present simpler and improved constructions of unbounded attribute-based encryption (ABE) schemeswith constant-size public parameters under static assumptions in bilinear groups. Concretely, we obtain: – a simple and adaptively secure unbounded ABE scheme in composite-order groups, improving upon a previousconstruction of Lewko and Waters (Eurocrypt ’11) which only achieves selective ...

متن کامل

Efficient revocable identity-based encryption via subset difference methods

Providing an efficient revocation mechanism for identity-based encryption (IBE) is very important since a user’s credential (or private key) can be expired or revealed. Revocable IBE (RIBE) is an extension of IBE that provides an efficient revocation mechanism. Previous RIBE schemes essentially use the complete subtree (CS) scheme for key revocation. In this paper, we present a new technique fo...

متن کامل

New Revocable IBE in Prime-Order Groups: Adaptively Secure, Decryption Key Exposure Resistant, and with Short Public Parameters

Revoking corrupted users is a desirable functionality for cryptosystems. Since Boldyreva, Goyal, and Kumar (ACM CCS 2008) proposed a notable result for scalable revocation method in identity-based encryption (IBE), several works have improved either the security or the efficiency of revocable IBE (RIBE). Currently, all existing scalable RIBE schemes that achieve adaptively security against decr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015